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Cherenkov Luminosity CountersMotivation and Design

Specifications for CDF Luminosity Detector

• Precise absolute measurement of total luminosity is crucial for physics
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• Rate of ppbar interactions
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Npp = μfBC = σinL
•Operate at high luminosity ( L ∼ 

4×1032 cm-2s-1, μ ∼ 12 ppbar/BC)

•Measure Luminosity
- Instantaneous and Total
- Real-time
- Bunch by bunch
- Precise (few %)

• Z-profile of collisions

• Provide Minimum Bias Trigger

CDF: Gaseous Cherenkov Luminosity Counters
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Cherenkov Luminosity CountersMotivation and Design

Cherenkov Luminosity Counters: Basic Ideas

• Separate particle from primary 
interactions and sec. particles

• Good amplitude resolution
‣ about 18% (photo stat, light 

collection, PMT resolution)

• Good timing resolution
‣ separate collisions/losses

• Radiation hard, low mass
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Cherenkov Luminosity CountersMotivation and Design

Cherenkov Luminosity Counters: Design

• 48 counters/side

• 3 layers ×         
16 counters

•Coverage: 3.7 ≤ 
｜η｜≤4.7

• Isobutane 2 atm,                   
n = 1.000143,    
θC = 3.1°

• PMT Hamamatsu 
R5800Q CC 
quartz window, 
gain 105
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Amplitude and MultiplicityPerformance

Amplitude Distributions in ppbar Collisions

• Full Simulation vs Data • Simulation agrees well w/ data
• Single particle peak buried under 

secondary interactons
•Clear peak after isolation 

requirement:
‣ Amplitude < 20 p.e. in 

surrounding counters
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p2 - SPP position
p4 - SPP width

SPPfit
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Amplitude and MultiplicityPerformance

Multiplicity Distributions in ppbar Collisions

•Hits: counters with Amplitude > threshold (250 ADC, set in firmware)
• Particles: Npart = Amplitude / AmplitudeSPP

• Shape of multiplicity is more sensitive to variations in PMT gain (data) and 
accounting for all material in front of the detector (simulation)
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High Instantaneous LuminosityPerformance

Luminosity Measurement Basics

• Rate of ppbar interactions:                
Npp = μfBC = σinL, where

‣ fBC is freq. of bunch crossings

‣ σin=61.7 mb is x-sec. of pp int.

‣ μ is number of int./BC

• Instantaneous Luminosity

•How to measure μ?

• Empty Crossings: BC w/o int.

‣ probability:   P0 = N0 / NBC

‣ naively:  P0 = e-μ  ⇒ μ = -log P0

‣ need to take into account 
detector acceptance: 
P0=(2eμε1-1)⋅e-μ(1-ε0)                         
where ε0 is prob. of no hits in 
detector and ε1 is prob. of hits 
only in one side

‣ systematic uncertainty 4.5%
- dominated by acceptance (4%)

•Other methods:

‣ Hits: μ = NhitsBC / Nhits1

‣ Particles: μ ∼ ∑i Ai
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L = μfBC/σin
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High Instantaneous LuminosityPerformance

High Luminosity: Rare Empty Crossings

• Typical acceptances

‣ 2 Layers: ε0 ∼ ε1 ∼ 15%,   acc ∼ 55%

‣ 1 Layer: ε0 ∼ ε1 ∼ 20%,   acc ∼ 40%

•NBC ≈ 20000 per measurement

‣ limited by h/w DAQ

•Cutoff (adjustable in s/w)

‣ N0 < 4, P0 < 2⋅10-4

• Cutoff Luminosity (assuming equal 
luminosity per bunch)

‣ using 2 Layers:  ∼ 360 ⋅ 1030 cm-2s-1

‣ using 1 Layer: ∼ 400 ⋅ 1030 cm-2s-1
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Large Total LuminosityPerformance

Large Total Luminosity: Aging

• Factory aging test

‣ 1000 h at 10 μA

‣ ΔI / I = 10 - 35%

•Corresponds to                        
30 - 80 % per fb-1

• PMT aging in detector
‣ hard to calibrate Ampl. < 200
‣ aging rate aprox. 35% per fb-1

‣ agrees well w/ Hamamatsy spec.

• HV/gain adjustments:
‣ same aging rate
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Cross-sectionPerformance

CLC Effective Cross-section

•CLC cross-section vs store # (after 2007 shutdown)
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     ●     Offline CLC cross-section
            Online CLC cross-section

• Use real data

• Fit SPP

• Feed SPP values to 
Monte-Carlo simulation

• Get new effective 
CLC cross-section

• Adjust online

• Apply offline 
corrections

In situ calibrations
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PedestalPeformance

Pedestal Effect on Luminosity Measurement

• SPPfit and PEDfit are obtained 
from data

• Acceptances are calculated using 
Monte-Carlo simulation

• SPP are corrected for pedestal 
and then we add default constant 
term of 50 ADC:

•Method is fine for PMTs working 
at high gain. As PMTs age and gain 
drops, effect of deviation of 
pedestals from default value 
become more evident
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PedestalPeformance

Recent Pedestal Effect on Luminosity Measurement

•After October 2008 shutdown 
gain of our PMTs reached critical 
region and we begun gradually 
underestimate acceptance due to 
pedestal shift effect

• It is directly translated into 
Luminosity overestimation

• Increased PMT gain beginning 
Store 6749: reduced pedestal 
effect to 1.5-2%

‣ We will use real pedestal values for 
online acceptances calculation: 
further eliminates these 1.5-2%
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 Summary

Summary

•CDF Cherenkov Luminosity Counters is robust, capable instrument for 
precise luminosity measurements at Tevatron

‣ in situ calibration from data allows to correct for various instability effects on 
store by store basis

• CLC performance is great at luminosities up to 400 ·1030 cm-2s-1 with 
uncertainty of 4.5%  [ ⊕ 4% from σin uncertainty, 6% total uncertainty ]

• Longevity is not an issue: with PMT replacement / gain adjustment it will 
stay in operation until end of Run II

•Will continue excellent contribution to Physics results from CDF
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